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1.  Introduction 

The US Army Research Laboratory (ARL) in collaboration with the US Army 
Missile Research, Development, and Engineering Center (AMRDEC) is seeking 
approaches to enhance the gas-generation rates of minimum smoke rocket 
propellant formulations without increasing their vulnerability to external threats. 
One approach is to embed them with thermally conductive wires. By enabling 
localized conductive heat transfer from the combustion zone into the uncombusted 
propellant,1-6 the wires serve as an ignition source that creates conically shaped 
burning surfaces. Reported as early as 19557 and fielded in the 1960’s (Redeye, 
Stinger missile systems), this approach has not become a standard because it is 
difficult and costly to implement reliably. Two significant challenges include 
casting the propellant grains without breaking the wires and properly bonding the 
propellant material to the wires such that there are no voids.  

Given the challenges of reliably manufacturing wire-embedded propellant grains, 
performance increases need to be significant to justify an attempt to field the 
technology. However, the limited understanding of the phenomenon that exists 
today makes it hard to realize the technology’s full potential. Only empirical models 
of the process have been developed to date; and they have not proven useful as 
design tools. Design parameters include the wires’ thermophysical properties and 
diameter(s), their number, spacing and orientation within the grain, and the 
thermophysical and chemical kinetics properties of the propellant formulation. As 
a result, AMRDEC has had to rely on experimental (trial and error) testing of 
various wire-propellant combinations as a basis for developing motor designs.  

Seeking to address this issue, ARL is developing a state-of-the-art computational 
fluid dynamics (CFD) model for simulating the phenomenon.8,9 As part of the 
effort, ARL is seeking experimental data that can be employed for model 
validation. In particular, direct observation of burning surfaces produced by various 
configurations of propellant and thermally conductive material is desired. Results 
from prior experiments with wire-embedded JA2 were previously published.5 
Unfortunately, the fine-grid spacings required to model strands embedded with thin 
(0.002 to 0.010 mil) Ag wires made it too computationally expensive to attempt to 
model them. Therefore, strands embedded with foils of like thickness were modeled 
instead. Because the modeled configurations involved much larger contact areas, 
and therefore much higher heat transfer rates, they produced much larger gas phase 
generations rates. While certainly consistent with expectations, the comparisons 
were not considered to provide the level of validation that was desired.  
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To produce results that could be directly compared to a system that was practical 
to model, a new set of experiments were conducted. In them, JA2 strands were 
configured with a 0.001-inch-thick aluminum foil bounding 1 side. Significant 
differences between the results obtained with such configurations and those 
obtained with wire-embedded strands were observed. The findings are discussed. 

2.  Experimental Methods 

2.1  Test Article Fabrication 

The propellant chosen for these experiments was JA2. This was done for several 
reasons:   

 JA2 is composed of nitrocellulose (NC), nitroglycerin (NG), and diethylene 
glycol dinitrate (DEGDN). As such, it is chemically similar to minimum 
smoke rocket propellants. 

 ARL has developed a model with detailed gas phase chemical kinetics that 
accurately reproduces the burning rate of JA2.10,11 

 JA2 stock was readily available for use in preparing test articles. 

Similar to the previous experiments, symmetry considerations led to a 
simplification in test article design. That is, instead of sandwiching a foil between 
2 JA2 sheets—which proved difficult to implement reliably—articles were made 
by bounding only 1 side of 1 sheet, creating a half sandwich. Figure 1 shows 
configurations that were built and compares them to the modeled configuration.  
Green represents the JA2 sheet and the gray represents the thermally conductive 
material.  

The JA2 strands were prepared from 0.150-inch-thick sheet stock. Strands had a 
nominal width of 0.5 inch and a height of 2.0 inch (Figs. 1b and 1c). To them, a  
0.001-inch-thick aluminum foil was bonded to 1 side with Elmer’s school glue. 
(The presence of the glue did not appear to impact the results.) Strands employed 
during the early stages of this study were built with the foil covering its entire 
height. Later, it only covered the bottom half. This configuration permitted burning 
rates for foil-less and foil-bounded sections to be acquired in 1 test. We also note 
that as long as the strand had smooth surfaces, particularly where it was cut, it was 
not necessary to use an inhibitor because edge effects did not present themselves.  

For the first set of experiments, the foil was placed on the wider (0.5 inch) face. 
However, the results obtained with this configuration (no. 1) proved to be erratic. 
Therefore, a second set of experiments was conducted in which the foil was bonded 
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to the 0.150-inch-wide face (Fig. 1c). Results obtained with this configuration 
(no. 2) proved to be more reproducible, and most of our conclusions are drawn from 
those results. 

 

Fig. 1 Images of JA2 configurations used for experiments and modeling: a) modeled 
configuration, b) experimental configuration no. 1, and c) experimental configuration no. 2 

2.2  Measurement Techniques 

All experiments were conducted in the ARL’s low-pressure strand burner (Fig. 2).12 
The apparatus includes a windowed chamber that is capable of being pressurized 
to 10 MPa (1,450 psi). Nitrogen was employed as the bath gas. To maintain constant 
pressure, the system includes a ballast tank that adds considerably to the system’s 
overall volume, thus negating pressure increases due to propellant combustion.  
Pressure was measured with both a Setra Systems pressure transducer and a Heise 
mechanical dial gauge. The desired chamber pressure for each experiment was 
established just prior to ignition. Ignition was achieved by electrically heating a 
nichrome wire placed on top of the strand. Events were recorded with a Phantom 
high-speed camera equipped with a fixed 50-mm Nikon lens and an aperture setting 
of f/16. Images were acquired at 60 fps with exposure ranging from 3 to 10 µs. To 
prevent smoke and soot buildup from obscuring the camera’s view, a slow, steady 
stream of nitrogen was flowed through the chamber over the course of each 
experiment. Gas flowed from the inlet at the center of the chamber base toward the 
exhaust port located at the center top of the chamber.  
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Fig. 2 Schematic of strand burner facility (left), windowed strand burner (middle), and 
control panel (right) 

The test articles were burned at a constant pressure in the range 2.00–6.98 MPa 
(290–1,010 psi). To obtain burning rates, the flame propagation was measured as a 
function of time along the strands’ foil-bonded edge. Linear least squares fits to the 
data yielded the reported burning rates. 

3.  Results 

3.1  Configuration No. 1 

Foil-less sections of JA2 strands burned in cigarette-like fashion and burning rates 
were easily measured. Once the foil-bounded section was reached, the burning rate 
quickly increased along the foil-bonded edge and the acceleration progressed 
outward until a second steady state emerged—with the burning surface being 
planar, but no longer making a right angle with the bonded edge. Qualitatively, this 
course of events was similar to that witnessed with wire-embedded test articles.5 

Figure 3 illustrates results from a representative test with configuration no. 1. The 
left image shows deflagration prior to the burning surface reaching the foil. The 
right image corresponds to a time after the foil had been reached. Data acquired 
during this test is shown in Fig. 4. It demonstrates the nearly instantaneous 
transition in burning rate between the 2 sections. The burning rate with respect to 
the z-axis for the foil-bound section (7.01 cm/s) is almost 390% faster than that 
measured for the foil-less section (1.44 cm/s).  
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Fig. 2 Results obtained with configuration no. 1 test article: 1) foil-less section (left),  
2) section with 0.001-inch-thick Al foil attached to right side (right) 

 

Fig. 3 Data obtained with a configuration no. 1 test article 

Table 1 illustrates the wide variability in data recorded. For example, shot 1 
experienced a side ignition the instant the foil was reached by the flame so there is 
no data for the foil section. Others had a noticeable burning rate transition within 
the foil zone, those are the pressures marked as “a” and “b”, shots 7 and 10 in  
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particular. Shot 9 appeared to transition between 2 different burning rates within 
the foil zone. Therefore, a burning rate was calculated for the whole event, and 2 
separate burning rates “a” and “b” for the 2 distinct regions. 

Table 1 Initial foiled JA2 burning rate data 

Test Foil P BR R2 
BR  

Increase 
Θ, 

Measured 

 (Y/N) (MPa) (cm/s)  (%) (°) (°) 

1 N 3.52 0.756 0.9994 … … … 

2 N 6.96 1.342 0.9988 … … … 

3 N 6.98 1.441 0.9991 … … … 

 Y 6.98 7.014 0.9916 387 11.5 11.9 

4 Y 6.94 5.496 0.9816 310 15.8 14.1 

5 N 5.25 1.047 0.9997 … … … 

6 Y 5.27a 1.872 0.9946 79 35.7 34 

 Y 5.27b 6.858 0.9564 555 13 8.8 

7 N 5.30 1.060 0.9990 … … … 

 Y 5.30a 1.992 0.9905 88 37.6 32.1 

 Y 5.30b 5.303 0.9687 400 12.5 11.5 

8 N 3.44 0.766 0.9997 … … … 

 Y 3.44 6.687 0.9655 773 7.3 6.6 

9 Y 3.48 2.221 0.9454 190 … 20.2 

 Y 3.48a 0.883 0.9765 15 54.6 60.2 

 Y 3.48b 1.943 0.9398 154 15.5 23.2 

10 N 3.51 0.815 0.9968 … … … 

 Y 3.51a 2.058 0.9194 153 29 23.3 

 Y 3.51b 2.344 0.9842 188 27.5 20.3 

11 N 2.02 0.497 0.9988 … … … 

 Y 2.02 2.221 0.9894 347 18 12.9 

12 N 2.03 0.519 0.9986 … … … 

 Y 2.03 1.535 0.9906 196 14.9 19.8 

 
There were 3 instances where 2 distinct burning rates were observed, a lower early 
time rate and a significantly higher later time rate. An example of such a result is 
shown in Fig. 5. From the onset of burning until about 0.45 seconds (s) the burning 
rate was 1.87 cm/s; however after 0.45 s the burning rate was a much faster 6.86 
cm/s. JA2’s baseline burning rate at this pressure is 1.05 cm/s. Therefore, the 
increase in burning rate was 80% in the beginning but transitioned to a 550% 
increase towards the end. It is believed that the lack of consistent burning rate 
increase is due to a foil-propellant bonding issue. 
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Fig. 4 Bimodal burning rate enhancement of JA2 with foil. (The burning rate of foil-less 
sections at this pressure were found to be approximately 1.05 cm/s.) 

In addition to bimodal behavior, on 2 occasions, there was evidence of side ignition 
of the propellant in the foil-bound region. Figure 6 shows consecutive images from 
an experiment where the foil begins to peel off the propellant (inside the red circle) 
in the first image and in the next image evidence of side ignition is present. The 
yellow arrows indicate the direction of flame propagation. Again, this phenomenon 
was likely the result of a bounding issue between the foil and propellant. 

However, not all strands burned inconsistently, some strands exhibited a burning 
behavior like one would expect when compared to a wire-embedded propellant. 
Thus, some of the data may be useful for modeling purposes. 
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Fig. 5 Consecutive images from JA2 foil experiment at 3.48 MPa. The foil placed on the 
right side of the propellant for heat transfer purposes is circled. Note the right image has side 
ignition. 

3.2  Configuration No. 2 

In configuration no. 2, the total surface area of propellant and aluminum in contact 
with each other is approximately 0.25 in2. This is considerably less than the 1.0 in2 
contact area of configuration no. 1; but still much more than the case of wires, 
where the greatest surface contact area (associated with the 0.010-inch wire) is 
approximately 1.57  10–4 in2 surface contact area. For these experiments each 
strand had a short (approximately 0.3 inch) foil-less section in addition to the foil-
bound section (Fig. 7). Figure 8 illustrates a representative profile of the foiled 
section of propellant.  
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Fig. 6 Test article 

 

 

Fig. 7 Image of article burning at 3.52 MPa 
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At the highest and lowest pressures the measured burning rates were highly 
reproducible. Results obtained at intermediate pressures were slightly less 
consistent. Sample 5 had less foil (approximately half the strand) compared to the 
rest of the samples and exhibited a slower transition to enhanced burning. This 
could explain why the burning rate measured in this test is significantly lower than 
the one measured for shot 6. Otherwise, the deflagration exhibited a quick, smooth 
transition between the foil-less and foil-bound sections. Figures 9 and 10 show the 
raw burning rate data produced at 6.94 and 2.05 MPa, respectively. Starting times 
are arbitrary. The raw data for all 8 shots is found in the appendix. 

 

Fig. 8 Test 2, 6.94 MPa burning rate data. Blue is foil-less JA2, red is foil-bounded. 
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Fig. 9 Test 8, 2.05 MPa burning rate data. Blue is foil-less JA2, red is foil-bounded. 

At each pressure, the burning rates measured for the foil-less section were in excellent agreement, 
and the expression 0.245*P0.804 fit the data with a coefficient of determination of 0.993. Table 2 
also includes the mass flux rates measured for each test. They were calculated by multiplying the 
burning rate measured with respect to the z-axis by the density of JA2 (1.60 g/cc). 

Table 2 Foiled JA2 burning rate data 

Test 
P 

(MPa) 
Foil 

BRz
a 

(cm/s) 
Mass Flux 
(g/cm2-s) 

% Increase 
ϴ, measured  

(°) 
ϴ,  

(°) 
1 6.94 No 1.175 1.88 … … … 
 6.94 Yes 3.154 5.05 168 20.6 21.9 
2 6.94 No 1.225 1.96 … … … 
 6.94 Yes 2.935 4.70 140 22.9 24.7 
3 5.23 No 0.893 1.43 … … … 
 5.23 Yes 3.541 5.67 297 15.5 14.6 
4 5.23 No 0.874 1.40 … … … 
 5.23 Yes 2.556 4.09 193 21.2 20.0 
5 3.49 No 0.674 1.08 … … … 
 3.49 Yes 1.664 2.66 147 25.7 23.9 
6 3.52 No 0.674 1.08 … … … 
 3.52 Yes 2.796 4.47 315 14.2 13.9 
7 2.05 No 0.443 0.71 … … … 
 2.05 Yes 1.532 2.45 246 17.7 16.8 
8 2.05 No 0.434 0.69 … … … 
 2.05 Yes 1.467 2.35 238 17.0 17.2 

aBurning rate with respect to the z-axis. 
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For the foiled propellant, gas generation rate increases ranged from 150% to 300% with the amount 
of increase greatest at the lower pressures. Data analysis shows that the average burning rate 
increase at 2.05, 3.50, and 5.23 MPa to be 242%, 230%, and 245%, respectively. This suggests 
that there is a finite burning rate increase possible with the presence of a thermally conductive foil 
and that we have reached that maximum. Also, in contrast to wire-embedded strands, the foil-
bounded strands did not show burning rate increases less than 100%. Embedded with thin wires, 
burning rate increases between 20% and 50% were observed at low pressures. 

Figure 11 plots the data of Table 2 and shows the flatter burning rate increase with respect to 
pressure of the foil-bounded propellant. The lower burning rate exponent indicates that the foiled 
propellant’s performance is less dependent on pressure; however, there is still a burning rate 
dependence on pressure (i.e., higher burning rates at higher pressures). A statistical analysis of 
these limited data shows that they are not sufficient to prove that they are different. At a 90% 
confidence interval, the burning rate exponent of the foiled propellant ranges from 0.22 to 0.90. 
At the same confidence, the foil-less burning rate exponent ranges from 0.75 to 0.94. It should be 
noted that this observation is only valid for the relatively low-pressure regime at which the 
experiments were conducted, maximum 6.93 MPa (1,000 psi). 

 

Fig. 10 Summary of burning rate vs. pressure for neat and foiled JA2 
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Table 2 and Fig. 12 also shows measured surface-foil angles (ϴ) and compares them to the angle 
calculated based on the foil-less linear burning rate of JA2 and the (enhanced) burning rate 
measured with respect to the z-axis (BRz). If the burning rate normal to the surface (BRn) is the 
same as the normal linear burning rate, then based on geometric considerations,  

 cos 90 ϴ 	  (1) 

or  

 ϴ 	sin   . (2) 

 

Fig. 11 Diagram of deflagration profile 

As such, the results indicate that other phenomena that might increase the normal linear burning 
rate, such as in-depth heating of the bulk propellant or erosive burning due to convective flows 
directed across the burning surface, play little if any role. Rather, the foil acts primarily as an 
ignition source that serves to propagate a deflagration normal to the side wall, increasing the area 
of the burning surface. 

Results from these experiments will be transitioned to the ARL’s modeling effort with the goal of 
being able to accurately predict enhanced mass generation rates and surface topology for nitrate-
ester based propellants embedded with thermally conductive materials, whether the material is a 
foil or wire. Ideally, actual wire-embedded rocket propellant would be burned in the strand burner 
to determine application-related enhanced burning rate characteristics. However, we do not have 
an in-house capability for making them. Thus they need to be furnished by a third party. 
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3.3  Other Observations 

The videographs clearly show that JA2 burning in this pressure regime has cellular structure, 
particularly at the foil-propellant interface. This cellular structure was present and stable 
throughout the burning event. Figure 13 shows this quite well as the dark zone of the flame forms 
many small arches above the propellant surface. 

 

Fig. 12 Close-up of burning surface illustrating cellular flame structure 

Finally, 1 variable in the experimental setup that was not considered in the analysis of the results 
is the flow rate of nitrogen gas over the strands as they were being burned. The gas was flowed 
from the base of the propellant strand toward the exhaust located at the top of the chamber to clear 
any smoke that might have obscured the video imaging. The gas flow rate was controlled by 2 
hand-turned valves, 1 for the inlet and 1 for exhaust. Adjusted together to maintain constant 
pressure inside the chamber and with the intent to keep it at a minimum, it is nevertheless quite 
likely that flow rate varied from test to test. Introducing this flow may ultimately introduce a 
cooling effect on the strand, which could alter heat transfer rates through the metal foil and produce 
inconsistent results. 

4.  Summary and Conclusions 

Experiments were conducted to visualize the deflagration of foil-bounded JA2 strands at pressures 
from 2 to 7 MPa. Normal linear burning rates, burning rates relative to the strand’s side wall, and 
angles between the surface and the sidewall were measured. Considered together, the results 
indicate that the increase in gas (mass) generation rates observed, which ranged from 150% to 
250%, were primarily due to the foils acting as an ignition source that served to propagate a 
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deflagration wave normal to the side wall, increasing the total area of the burning surface. Other 
phenomena that might increase the rate, such as in-depth heating of the bulk propellant or erosive 
burning due to convective flows directed across the burning surface, appear to play little if any 
role. It was also observed that the gas generation rate for foil-bounded strands was less pressure 
dependent than that for the baseline (foil-less) configuration. Finally, the videographs showed that 
although the surface regressed in a steady, planar manner, the gas-phase flame has cellular 
structure. Pertaining to a relatively simple geometry, these results should provide a good basis with 
which to validate CFD models for simulating the deflagration of wire-embedded propellants. 
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Appendix. Raw Data 

                                                 
This appendix appears in its original form, without editorial change. 
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Foil on 0.150-in surface (Fig. 1c). Blue is foil-less JA2 and red is foiled section of JA2. 
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23 

List of Symbols, Abbreviations, and Acronyms 

θ theta; cone angle of flame 

AMRDEC US Army Missile Research, Development, and Engineering Center 

ARL US Army Research Laboratory 

BR Burning Rate 

cc cubic centimeters 

CFD computational fluid dynamics 

cm centimeter 

cm/s centimeter per second 

DEGDN diethylene glycol dinitrate 

fps frames per second 

in2 square inches 

P Pressure 

psi pounds per square inch 

MPa Mega Pascal 

mm millimeter 

NC nitrocellulose 

NG nitroglycerin 

R2 coefficient of determination 

s second(s) 

µs microsecond 
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